Yangge Li

Apt 209, 201 S.Wright St. Champaign 61820 • 217-281-2019 • li213@illinois.edu

EDUCATION

University of Illinois

Urbana-Champaign, IL

PhD. Candidate, Electrical Engineering in ECE, Estimated Graduation May 2025

M.S., Electrical Engineering in ECE, Graduated December 2021

B.S., Electrical Engineering in ECE, Graduated May 2019

RESEARCH HIGHLIGHTS

Vision Based Drone Tracking

Ongoing

- Develop algorithm for vision based tracking of a follower drone to a leader drone
- Develop recovery strategy when losing visual contact
- · Extend average dwell time theorem from hybrid system stability to proof convergence of tracking algorithm
- Evaluate the algorithm in both simulators and in-house built hardware drone

Verifying Control Systems with Deep-learning Enabled Perception

Ongoing

- · Develop perception contract method for verification of control systems with deep-learning enabled perception
- Perception contract is a specification for testing the ML components, gives a method for proving end-to-end system-level safety requirements
- Develop algorithm for constructing data and requirement guided refinement of perception contracts (DaRePC)
- Use DaRePC to analyze a vision-based autolanding scenario and a vision-based drone racing scenario
- Photo-realistic simulation using neural radiance field (NeRF)
- Related papers published/submitted to conference including TACAS2024, EMSOFT2022, ACC2024

Verse: A Python Library for Reasoning about Multi-agent Hybrid System Scenarios

2022-2023

- We developed verse library aiming for making hybrid system verification usable of multi-agent scenarios
- Decision making agents move in a map and interact with each other through sensors
- Python decision logic for agents and continuous dynamics by black-box simulator
- Simple instantiation of multiple agents
- Simple simulation and reachability analysis of scenario
- Tool available at: https://github.com/AutoVerse-ai/Verse-library
- Related papers published in conference including CAV2023, ATVA2023, ICCPS2023, AIAA SciTech 2024

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions

2021

- Develop verification tool SceneChecker
- Verifying scenarios involving vehicles executing complex plans in large cluttered workspace
- Use symmetry abstractions to boost performance of existing verification tools
- Achieve 14x speed up in verification times
- Tool available at: https://github.com/SceneChecker-Development-Team/SceneChecker-Tool
- Related paper published in CAV2021

WORK EXPERIENCE

System Development Engineer Intern (Amazon.com Services LLC)

Summer 2021

- Working with hardware validation team at Amazon Lab126
- Working on hardware automated Quality Assurance (QA) tests for Amazon devices
- Design automated QA test procedure and metrics with the team
- Writing automated tests for various features on Amazon devices

Hardware Development Engineer Intern (Amazon.com Services LLC)

Summer 2019, Summer 2020

- Working on hardware validation test automation
- Designing automated hardware validation test flow from members of hardware validation team
- Designing software interacting with various instruments including oscilloscope, DC power supply, waveform generator, digital multimeter, temperature chamber

SKILLS & TOOLS

Programming Language: Python, Matlab, C++, C

Software Tools: ROS, Gazebo, AirSim, CARLA, PyTorch, Solidworks

Highlighting Courseworks: Optimum Control Systems, Analysis of Nonlinear Systems, AI for Robot Manipulation, Logic and

AI, Embedded System Verification